Histological Characterization of the Tumorigenic “Peri-Necrotic Niche” Harboring Quiescent Stem-Like Tumor Cells in Glioblastoma
نویسندگان
چکیده
BACKGROUND Characterization of the niches for stem-like tumor cells is important to understand and control the behavior of glioblastomas. Cell-cycle quiescence might be a common mechanism underlying the long-term maintenance of stem-cell function in normal and neoplastic stem cells, and our previous study demonstrated that quiescence induced by hypoxia-inducible factor (HIF)-1α is associated with a high long-term repopulation capacity of hematopoietic stem cells. Based on this, we examined human astrocytoma tissues for HIF-1α-regulated quiescent stem-like tumor cells as a candidate for long-term tumorigenic cells and characterized their niche histologically. METHODS Multi-color immunohistochemistry was used to visualize HIF-1α-expressing (HIF-1α+) quiescent stem-like tumor cells and their niche in astrocytoma (WHO grade II-IV) tissues. This niche was modeled using spheroids of cultured glioblastoma cells and its contribution to tumorigenicity was evaluated by sphere formation assay. RESULTS A small subpopulation of HIF-1α+ quiescent stem-like tumor cells was found in glioblastomas but not in lower-grade astrocytomas. These cells were concentrated in the zone between large ischemic necroses and blood vessels and were closer to the necrotic tissues than to the blood vessels, which suggested that a moderately hypoxic microenvironment is their niche. We successfully modeled this niche containing cells of HIF-1α+ quiescent stem-like phenotype by incubating glioblastoma cell spheroids under an appropriately hypoxic condition, and the emergence of HIF-1α+ quiescent stem-like cells was shown to be associated with an enhanced sphere-forming activity. CONCLUSIONS These data suggest that the "peri-necrotic niche" harboring HIF-1α+ quiescent stem-like cells confers a higher tumorigenic potential on glioblastoma cells and therefore may be a therapeutic target to control the behavior of glioblastomas.
منابع مشابه
O27: Interaction of Cancer Stem Cells and Microglia in Glioblastoma Multiforme
Malignant gliomas are highly invasive brain tumors with the occurrence of multiple microglia/macrophages in the tumor microenvironment. Macrophages/microglia that found in glioma microenvironment, as tumor-infiltrating immune cells, can play a harmful role in tumor progression. In addition, glioblastoma multiforme (GBM) contains multiple aberrant differentiation and tumorigenic cancer stem cell...
متن کاملModeling Microenvironmental Regulation of Glioblastoma Stem Cells: A Biomaterials Perspective
Following diagnosis of a glioblastoma (GBM) brain tumor, surgical resection, chemotherapy, and radiation together yield a median patient survival of only 15 months. Importantly, standard treatments fail to address the dynamic regulation of the brain tumor microenvironment that actively supports tumor progression and treatment resistance. It is becoming increasingly recognized that specialized n...
متن کاملW4: Cancer Stem Cells as a New Target Point for Treatment of Glioblastoma
Glioblastoma is a destructive form of brain tumor that kills most patients within two years of diagnosis.Treatments for glioblastoma include the usual options of surgery, radiation therapy and chemotherapy, but there is no effective treatment. The tumors are capable of spreading tendrils out into the brain and it can grow back in a matter of months after being removed. The cancer stem cell...
متن کاملBrain tumor stem cells: will understanding a new paradigm lead to improved therapies?
Solid tumors are a complex network consisting of cells at various stages of differentiation, neovasculature structures, reactive inflammatory cells, recruited cells and infiltrated parenchyma that interact within the tumor mass. However, evidence strongly indicates that cancer stem cells (CSCs) drive tumorigenesis, as these cells possess self-renewal and tumorigenic capacity absent in the major...
متن کاملAn overview of therapeutic approaches to brain tumor stem cells
Primary and secondary malignant central nervous system (CNS) tumors are devastating invasive tumors able to give rise to many kinds of differentiated tumor cells. Glioblastoma multiform (GBM), is the most malignant brain tumor, in which its growth and persistence depend on cancer stem cells with enhanced DNA damage repair program that also induces recurrence and resists current chemo- and radi...
متن کامل